105 research outputs found

    Backward assembly planning with DFA analysis

    Get PDF
    An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies is presented. The planning system analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc., that must occur during the assembly. Additionally, the planning handles nonreversible, as well as reversible, assembly tasks through backward assembly planning. In order to decrease the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan

    Interactive and cooperative sensing and control for advanced teleoperation

    Get PDF
    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decisionmaking between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. The Sensing-Knowledge-Command (SKC) fusion network is proposed as a fundamental architecture for implementing cooperative and interactive sensing and control. Simulation results are shown

    Artificial dexterous hand

    Get PDF
    An artificial dexterous hand is provided for grasping and manipulating objects. The hand includes left and right thumbs that are operatively connected to an engagement assembly which causes movement of the left and right thumbs. The left thumb has a left thumb base and is movable about three separate first left thumb axes which run through the left thumb base. Correspondingly, the right thumb has a right thumb base and is movable about three separate first right thumb axes which run through the right thumb base. The engagement assembly has a gear assembly which is operatively connected to a motor assembly. Upon actuation by the motor assembly, the gear assembly causes movement of the left and right thumbs about the first left thumb axes and first right thumb axes respectively. The hand can also have a center finger which is operatively connected to the engagement assembly and which is interposed between the left and right thumbs. The finger has a finger base and is movable about two separate first finger axes running through the finger base. Therefore, upon actuation by the motor assembly, the gear assembly will also cause movement of the finger about the first finger axes

    Backward assembly planning with DFA analysis

    Get PDF
    An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies, and analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans is presented. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc. that must occur during the assembly, and handles nonreversible as well as reversible assembly tasks through backward assembly planning. In order to increase the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan

    Distributed proximity sensor system

    Get PDF
    The invention relates to sensors embedded on the surface of a robot hand, or other moving member. By distributing proximity sensors capable of detecting distances and angles to points on the surface of an object, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction, and distance, as well as the orientation of the object relative to the robot hand or other moving member

    Man-machine cooperation in advanced teleoperation

    Get PDF
    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints

    FPGA Based Pattern Generation and Synchonization for High Speed Structured Light 3D Camera

    Get PDF
    Recently, structured light 3D imaging devices have gained a keen attention due to their potential applications to robotics, industrial manufacturing and medical imaging. Most of these applications require high 3D precision yet high speed in image capturing for hard and/or soft real time environments. This paper presents a method of high speed image capturing for structured light 3D imaging sensors with FPGA based structured light pattern generation and projector-camera synchronization. Suggested setup reduces the time for pattern projection and camera triggering to 16msec from 100msec that should be required by conventional methods

    Robotic execution for everyday tasks by means of external vision/force control

    Get PDF
    In this article, we present an integrated manipulation framework for a service robot, that allows to interact with articulated objects at home environments through the coupling of vision and force modalities. We consider a robot which is observing simultaneously his hand and the object to manipulate, by using an external camera (i.e. robot head). Task-oriented grasping algorithms [1] are used in order to plan a suitable grasp on the object according to the task to perform. A new vision/force coupling approach [2], based on external control, is used in order to, first, guide the robot hand towards the grasp position and, second, perform the task taking into account external forces. The coupling between these two complementary sensor modalities provides the robot with robustness against uncertainties in models and positioning. A position-based visual servoing control law has been designed in order to continuously align the robot hand with respect to the object that is being manipulated, independently of camera position. This allows to freely move the camera while the task is being executed and makes this approach amenable to be integrated in current humanoid robots without the need of hand-eye calibration. Experimental results on a real robot interacting with different kind of doors are pre- sented
    • …
    corecore